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Abstract
RSA and DSA can fail catastrophically when used with
malfunctioning random number generators, but the extent
to which these problems arise in practice has never been
comprehensively studied at Internet scale. We perform
the largest ever network survey of TLS and SSH servers
and present evidence that vulnerable keys are surprisingly
widespread. We find that 0.75% of TLS certificates share
keys due to insufficient entropy during key generation,
and we suspect that another 1.70% come from the same
faulty implementations and may be susceptible to com-
promise. Even more alarmingly, we are able to obtain
RSA private keys for 0.50% of TLS hosts and 0.03% of
SSH hosts, because their public keys shared nontrivial
common factors due to entropy problems, and DSA pri-
vate keys for 1.03% of SSH hosts, because of insufficient
signature randomness. We cluster and investigate the vul-
nerable hosts, finding that the vast majority appear to be
headless or embedded devices. In experiments with three
software components commonly used by these devices,
we are able to reproduce the vulnerabilities and identify
specific software behaviors that induce them, including
a boot-time entropy hole in the Linux random number
generator. Finally, we suggest defenses and draw lessons
for developers, users, and the security community.

1 Introduction and Roadmap

Randomness is essential for modern cryptography, where
security often depends on keys being chosen uniformly at
random. Researchers have long studied random number
generation, from both practical and theoretical perspec-
tives (e.g., [9, 14, 17, 19, 24, 26]), and a handful of major
vulnerabilities (e.g., [6, 22]) have attracted considerable
scrutiny to some of the most critical implementations.
Given the importance of this problem and the effort and
attention spent improving the state of the art, one might

∗The first two authors both made substantial contributions.

expect that today’s widely used operating systems and
server software generate random numbers securely. In this
paper, we test that proposition empirically by examining
the public keys in use on the Internet.

The first component of our study is the most compre-
hensive Internet-wide survey to date of two of the most
important cryptographic protocols, TLS and SSH (Sec-
tion 3.1). By scanning the public IPv4 address space,
we collected 5.8 million unique TLS certificates from
12.8 million hosts and 6.2 million unique SSH host keys
from 10.2 million hosts. This is 67% more TLS hosts
than the latest released EFF SSL Observatory dataset [20].
Our techniques take less than 24 hours to scan the entire
address space for listening hosts and less than 96 hours
to retrieve keys from them. The results give us a macro-
scopic perspective of the universe of keys.

Next, we analyze this dataset to find evidence of several
kinds of problems related to inadequate randomness. To
our surprise, at least 5.57% of TLS hosts and 9.60% of
SSH hosts use the same keys as other hosts in an appar-
ently vulnerable manner (Section 4.1). In the case of TLS,
at least 5.23% of hosts use manufacturer default keys that
were never changed by the owner, and another 0.34%
appear to have generated the same keys as one or more
other hosts due to malfunctioning random number gener-
ators. Only a handful of the vulnerable TLS certificates
are signed by browser-trusted certificate authorities.

Even more alarmingly, we are able to compute the
private keys for 64,000 (0.50%) of the TLS hosts and
108,000 (1.06%) of the SSH hosts from our scan data
alone by exploiting known weaknesses of RSA and DSA
when used with insufficient randomness. In the case of
RSA, distinct moduli that share exactly one prime factor
will result in public keys that appear distinct but whose
private keys are efficiently computable by calculating
the greatest common divisor (GCD). We implemented
an algorithm that can compute the GCDs of all pairs of
11 million distinct public RSA moduli in less than 2 hours
(Section 3.3). Using the resulting factors, we are able to
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obtain the private keys for 0.50% of TLS hosts and 0.03%
of SSH hosts (Section 4.2). In the case of DSA, if a DSA
key is used to sign two different messages with the same
ephemeral key, an attacker can efficiently compute the
signer’s long-term private key. We find that our SSH scan
data contain numerous DSA signatures that used the same
ephemeral keys during signing, allowing us to compute
the private keys for 1.6% of SSH DSA hosts (Section 4.3).

To understand why these problem are occurring, we
manually investigated hundreds of the vulnerable hosts,
which were representative of the most commonly repeated
keys as well as each of the private keys we obtained
(Section 3.2). Nearly all served information identifying
them as headless or embedded systems, including routers,
server management cards, firewalls, and other network de-
vices. Such devices typically generate keys automatically
on first boot, and may have limited entropy sources com-
pared to traditional PCs. Furthermore, when we examined
clusters of hosts that shared a key or factor, in nearly all
cases these appeared to be linked by a manufacturer or
device model. These observations lead us to conclude
that the problems are caused by specific defective imple-
mentations that generate keys without having collected
sufficient entropy. We identified vulnerable devices and
software from 54 manufacturers, including some of the
largest names in the technology industry, and worked to
notify the responsible parties.

In the final component of our study, we experimen-
tally explore the root causes of these vulnerabilities by
investigating several of the most common open-source
software components from the population of vulnerable
devices (Section 5). Based on the devices we identified, it
is clear that no one implementation is solely responsible,
but we are able to reproduce the vulnerabilities in plau-
sible software configurations. Every software package
we examined relies on /dev/urandom to generate cryp-
tographic keys; however, we find that Linux’s random
number generator (RNG) can exhibit a boot-time entropy
hole that causes urandom to produce deterministic output
under conditions likely to occur in headless and embed-
ded devices. In experiments with OpenSSL and Dropbear
SSH, we show how repeated output from the system RNG
can lead not only to repeated long-term keys but also to
factorable RSA keys and repeated DSA ephemeral keys
due to the behavior of application-specific entropy pools.

Given the diversity of the devices and software im-
plementations involved, mitigating these problems will
require action by many different parties. We draw lessons
and recommendations for developers of operating sys-
tems, cryptographic libraries, and applications, and for de-
vice manufacturers, certificate authorities, end users, and
the security and cryptography communities (Section 7).
We have also created an online key-check service to allow
users to test whether their keys are vulnerable (Section 8).

It is natural to wonder whether these results should
call into question the security of every RSA or DSA key.
Based on our analysis, the margin of safety is slimmer
than we might like, but we have no reason to doubt the
security of most keys generated interactively by users on
traditional PCs. While we took advantage of the details
of specific cryptographic algorithms in this paper, we con-
clude that the blame for these vulnerabilities lies chiefly
with the implementations. Ultimately, the results of our
study should serve as a wake-up call that secure random
number generation continues to be an unsolved problem
in important areas of practice.

Online resources For the most recent version of this
paper, partial source code, updated advisories, and our
online key-check service, visit https://factorable.net.

2 Background

In this section, we review the RSA and DSA public-key
cryptosystems and discuss the known weaknesses of each
that we used to compromise private keys. We then discuss
how an adversary might exploit compromised keys to
attack SSH and TLS in practice.

2.1 RSA review

An RSA [45] public key consists of two integers: an ex-
ponent e and a modulus N. The exponent can be shared
among multiple public keys without compromising se-
curity, but the modulus cannot. The modulus N is the
product of two randomly chosen prime numbers p and q.
The private key is the decryption exponent

d = e−1 mod (p−1)(q−1).

Anyone who knows the factorization of N can efficiently
compute the private key for any public key (e,N) using
the preceding equation. When p and q are unknown, the
most efficient known method to calculate the private key
is to factor N into p and q and use the above equation to
calculate d [10].

Factorable RSA keys No one has been publicly
known to factor a well-generated 1024-bit RSA mod-
ulus; the largest known factored modulus is 768 bits,
which was announced in December 2009 after a multi-
year distributed-computing effort [34]. In contrast, the
greatest common divisor (GCD) of two 1024-bit integers
can be computed in microseconds. This asymmetry leads
to a well-known vulnerability: if an attacker can find two
distinct RSA moduli N1 and N2 that share a prime factor
p but have different second prime factors q1 and q2, then
the attacker can easily factor both moduli by computing
their GCD, p, and dividing to find q1 and q2. The attacker
can then compute both private keys as explained above.
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2.2 DSA review

A DSA [38] public key consists of three so-called do-
main parameters (two prime moduli p and q and a gener-
ator g of the subgroup of order q mod p) and an integer
y = gx mod p, where x is the private key. The domain
parameters may be shared among multiple public keys
without compromising security. A DSA signature con-
sists of a pair of integers (r,s): r = gk mod p mod q and
s = (k−1(H(m)+xr)) mod q, where k is a randomly cho-
sen ephemeral private key and H(m) is the hash of the
message.

Low-entropy DSA signatures DSA is known to fail
catastrophically if the ephemeral key k used in the signing
operation is generated with insufficient entropy [5]. (El-
liptic curve DSA (ECDSA) is similarly vulnerable. [12])
If k is known for a signature (r,s), then the private key
x can be computed from the signature and public key as
follows:

x = r−1(ks−H(m)) mod q.

If a DSA private key is used to sign two different messages
with the same k, then an attacker can efficiently compute
the value k from the public key and signatures and use
the above equation to compute the private key x [35]. If
two messages m1 and m2 were signed using the same
ephemeral key k to obtain signatures (r1,s1) and (r2,s2),
then this will be immediately clear as r1 and r2 will be
equal. The ephemeral key k can be computed as:

k = (H(m1)−H(m2))(s1− s2)
−1 mod q.

2.3 Attack scenarios

The weak key vulnerabilities we describe in this paper can
be exploited to compromise two of the most important
cryptographic transport protocols used on the Internet,
TLS and SSH, both of which commonly use RSA or DSA
to authenticate servers to clients.

TLS In TLS [18], the server sends its public key in a
TLS certificate during the protocol handshake. The key
is used either to provide a signature on the handshake
(when Diffie-Hellman key exchange is negotiated) or to
encrypt session key material chosen by the client (when
RSA-encrypted key exchange is negotiated).

If the key exchange is RSA encrypted, a passive eaves-
dropper with the server’s private key can decrypt the mes-
sage containing the session key material and use it to
decrypt the entire session. If the session key is negoti-
ated using Diffie-Hellman key exchange, then a passive
attacker will be unable to compromise the session key
from just a connection transcript. However, in both cases,
an active attacker who can intercept and modify traffic
between the client and server can man-in-the-middle the
connection in order to decrypt or modify the traffic.

SSH In SSH, host keys allow a server to authenticate
itself to a client by providing a signature during the pro-
tocol handshake. There are two major versions of the
protocol. In SSH-1 [52], the client encrypts session key
material using the server’s public key. SSH-2 [53] uses a
Diffie-Hellman key exchange to establish a session key.
The user manually verifies the host key fingerprint the
first time she connects to an SSH server. Most clients then
store the key locally in a known_hosts file and automati-
cally trust it for all subsequent connections.

As in TLS, a passive eavesdropper with a server’s pri-
vate key can decrypt an entire SSH-1 session. However,
because SSH-2 uses Diffie-Hellman, it is vulnerable only
to an active man-in-the-middle attack. In the SSH user au-
thentication protocol, the user-supplied password is sent
in plaintext over the encrypted channel. An attacker who
knows a server’s private key can use the above attacks
to learn a user’s password and escalate an attack to the
system.

3 Methodology

In this section, we explain how we performed our Internet-
wide survey of public keys, how we attributed vulnerable
keys to devices, and how we efficiently factored poorly
generated RSA keys.

3.1 Internet-wide scanning

We performed our data collection in three phases: dis-
covering IP addresses accepting connections on TCP
port 443 (HTTPS) or 22 (SSH); performing a TLS or
SSH handshake and storing the presented certificate chain
or host key; and parsing the collected certificates and
host keys into a relational database. Table 1 summarizes
the results.

Host discovery In the first phase, we scanned the pub-
lic IPv4 address space to find hosts with port 443 or 22
open. We used the Nmap 5 network exploration tool [39]
to perform a SYN scan1, which involves sending a TCP
SYN packet to each candidate host and detecting whether
the host responds with a SYN-ACK packet. We chose
this scanning method based on its low bandwidth require-
ments; for the vast majority of hosts (those with the target
port closed), at most two packets need to be exchanged.
We excluded address ranges reserved for location iden-
tification, private use, loopback, link local, multicast, or
future use in the IANA IPv4 address space registry [32].

1The Nmap options we used were: -sS -Pn -n -T5
--min-hostgroup=2000 --max-rtt-timeout=500ms
--min-rate=10000 We selected these parameters by choosing
the most aggressive parameters that did not cause non-negligible
dropoff in response on an EC2 Micro Instance.
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SSL Observatory Our TLS scan Our SSH scans
(12/2010) (10/2011) (2-4/2012)

Hosts with open port 443 or 22 ≈16,200,000 28,923,800 23,237,081
Completed protocol handshakes 7,704,837 12,828,613 10,216,363

Distinct RSA public keys 3,933,366 5,656,519 3,821,639
Distinct DSA public keys 1,906 6,241 2,789,662
Distinct TLS certificates 4,021,766 5,847,957 —

Trusted by major browsers 1,455,391 1,956,267 —

Table 1: Internet-wide scan results — We exhaustively scanned the public IPv4 address space for TLS and SSH
servers listening on ports 443 and 22, respectively. Our results constitute the largest such network survey reported to
date. For comparison, we also show statistics for the EFF SSL Observatory’s most recent public dataset [20].

We executed our first host discovery scan beginning
on October 6, 2011 from 25 Amazon EC2 Micro in-
stances spread across five EC2 regions (Virginia, Cali-
fornia, Japan, Singapore, and Ireland). The scan ran at an
average of 40,566 IPs/second and finished in 25 hours; it
found 28,923,800 IPs with port 443 open. We performed
a second scan to find SSH hosts, beginning on February
12, 2012; it found 23,237,081 IPs with port 22 open.

Certificate and host-key retrieval In the second
phase of the scanning process, we attempted a TLS or
SSH protocol handshake with the addresses accepting
connections on port 443 or 22 and recorded the TLS cer-
tificate or SSH host key presented by the server.

For TLS, we implemented a certificate fetcher in
Python using the Twisted event-driven network frame-
work [33]. We fetched TLS certificates using an EC2
Large instance with five processes each maintaining 800
concurrent connections. We started fetching certificates
on October 11, 2011. The fetcher processed a mean of 83
hosts/second and completed in approximately 96 hours. It
retrieved certificate chains from 12,828,613 IP addresses
(44.4% of hosts listening on port 443). These certificate
chains contained 5,656,519 distinct RSA public keys and
6,241 distinct DSA public keys.

To efficiently collect SSH host keys, we implemented
a simple SSH client in C, which is able to process up-
wards of 1200 hosts/second by concurrently perform-
ing protocol handshakes using libevent [40]. Our client
initiates a normal-looking connection and offers only
Diffie-Hellman Group 1 key exchange2, and then
downloads and stores the host key provided by the server.

Initially, we ran the fetcher from an EC2 Large instance
in a run that started on February 12, 2012. This run tar-
geted only RSA-based host keys and returned 3,821,639
distinct keys from 10,216,363 IP addresses (44.0% of
hosts listening on port 22). In two later runs, we targeted

2Our SSH client implementation is greatly simplified by only sup-
porting the Diffie-Hellman Group 1 key exchange, which is sup-
ported by all SSH servers.

DSA-based host keys, and rescanned those hosts that had
offered DSA keys in the first SSH scan. For these, we also
stored the authentication signature provided by the server;
we varied the client string to ensure that each signature
would be distinct. The first DSA run started on March
26, 2012 from a host at UCSD; it returned 2,091,643 dis-
tinct DSA host keys from 4,572,218 IP addresses (51.4%
of listening hosts). The second run, from a host at the
University of Michigan, started on April 1, 2012; it took
3 hours to complete and returned 2,058,706 distinct DSA
host keys from 4,542,707 IP addresses.

TLS certificate processing For TLS, we performed a
third processing stage in which we parsed the previously
fetched certificate chains and generated a database from
the X.509 fields. We implemented a certificate parser
in Python and C primarily based on the M2Crypto [46]
SWIG [3] interface to the OpenSSL library [16]. In to-
tal, we found 5,847,957 distinct certificates, of which
1,956,267(33.5%) were browser trusted. We deemed a
certificate to be trusted if we could find a chain of trust
leading to a root CA trusted by the current version of
Firefox, MacOS, OpenSSL, or Windows.

3.2 Identifying vulnerable device models

We attempted to determine what hardware and software
generated or served the weak keys we identified using
manual detective work. The most straightforward method
was based on TLS certificate information—predominately
the X.509 subject and issuer fields. In many cases, the
certificate identified a specific manufacturer or device
model. Other certificates contained less information; we
attempted to identify these devices through Nmap host
detection or by inspecting the public contents of HTTPS
sites or other IP services hosted on the IP addresses.

When we could identify a pattern in vulnerable TLS
certificates that appeared to belong to a device model or
product line, we constructed regular expressions to find
other similar devices in our scan results. Under the theory
that the keys were vulnerable because of a problem with
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the design of the devices (where they were most likely
generated), this allows us to estimate the total population
of devices that might be potentially vulnerable, beyond
those serving immediately compromised keys.

Identifying SSH devices was more problematic, as SSH
keys do not include descriptive fields and the server iden-
tification string used in the protocol often indicated only
a common build of a popular SSH server. We were able
to classify many of the vulnerable SSH hosts using a
combination of TCP/IP fingerprinting and examination of
information served over HTTP and HTTPS.

When we were able to identify a vulnerable device
model, we attempted to disclose the problem to the man-
ufacturer. We provided these manufacturers with back-
ground on the vulnerabilities, selected vulnerable IP ad-
dresses from among the hosts we identified, and sugges-
tions for remedying the problem.

The device names and manufacturers that we report
here have been identified with moderate or high confi-
dence given the available information. However, because
we do not have physical access to the hosts, we cannot
state with certainty that all our identifications are correct.

3.3 Efficiently computing all-pairs GCDs

We now describe how we efficiently computed the pair-
wise GCD of all distinct RSA moduli in our multimillion-
key dataset. This allowed us to calculate RSA private
keys for 66,540 vulnerable hosts that shared one of their
RSA prime factors with another host in our survey.

The fastest known factoring method for general integers
is the number field sieve, which has heuristic complexity
O(2n1/3(logn)2/3

) for n-bit numbers [36]. With current com-
puting power, factoring any of the 85,988 512-bit RSA
public keys detected in our scan is within the reach of
a dedicated amateur using existing implementations and
common hardware [49], but factoring all of them would
require thousands of years of computation.

In contrast to factoring, the greatest common divi-
sor (GCD) of two integers can be computed very ef-
ficiently using Euclid’s algorithm, with computational
complexity O(n2) bits for n-bit numbers. Using fast inte-
ger arithmetic, the complexity of GCD can be improved
to O(n(lgn)2 lg lgn) [8]. Computing the GCD of two
1024-bit RSA moduli using the GMP library [23] takes
approximately 15 µs on a current mid-range computer.

The naïve way to compute the GCDs of every pair of
integers in a large set would be to apply a GCD algorithm
to each pair individually. There are 6× 1013 distinct
pairs of RSA moduli in our data; at 15 µs per pair, this
calculation would take 30 years. We can do much better
by using a more efficient algorithm.

To accomplish this, we implemented a quasilinear-time
algorithm for factoring a collection of integers into co-

N1N2N3N4

×

N4N3

×

N2N1

N1N2N3N4

mod N2
1 N2

2

mod N2
1

/N1

·

mod N2
2

/N2

·

mod N2
3 N2

4

mod N2
3

/N3

·

mod N2
4

/N4

·gcd( ,N1) gcd( ,N2)gcd( ,N3) gcd( ,N4)

product
tree

remainder
tree

Figure 1: Computing all-pairs GCDs efficiently — We
computed the GCD of every pair of RSA moduli in our
dataset using an algorithm due to Bernstein [7]: First,
compute the product of all moduli using a product tree,
then use a remainder tree to reduce the product modulo
each input. The final output is the GCD of each input
modulus with the product of all the other moduli.

primes, due to Bernstein [7]. The relevant steps, illus-
trated in Figure 1, are as follows:

Algorithm 1 Quasilinear GCD finding

Input: N1, . . . ,Nm RSA moduli
1: Compute P = ∏Ni using a product tree.
2: Compute zi = (P mod N2

i ) for all i
using a remainder tree.

Output: gcd(Ni,zi/Ni) for all i.

A product tree computes the product of m numbers by
constructing a binary tree of products. A remainder tree
computes the remainder of an integer modulo many in-
tegers by successively computing remainders for each
node in their product tree. For further discussion, see
Bernstein [8].

The final output of the algorithm is the GCD of each
modulus with the product of all the other moduli. We
are interested in the moduli for which this GCD is not 1.
However, if a modulus shares both of its prime factors
with two other distinct moduli, then the GCD will be
the modulus itself rather than one of its prime factors—
therefore providing us no immediate factorization. This
occurred in a handful of instances in our dataset; we
factored these moduli using the naïve quadratic algorithm
for pairwise GCDs.

Using fast integer arithmetic algorithms, multiplication
and modular reduction on n-bit integers can be done in
time O(n lgn lg lgn), and GCDs in time n(lgn)2 lg lgn [8].
Thus, the asymptotic running time of Algorithm 1 on m
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Our TLS Scan Our SSH Scans

Number of live hosts 12,828,613 (100.00%) 10,216,363 (100.00%)

. . . using repeated keys 7,770,232 (60.50%) 6,642,222 (65.00%)
. . . using vulnerable repeated keys 714,243 (5.57%) 981,166 (9.60%)

. . . using default certificates or default keys 670,391 (5.23%)

. . . using low-entropy repeated keys 43,852 (0.34%)
. . . using RSA keys we could factor 64,081 (0.50%) 2,459 (0.03%)
. . . using DSA keys we could compromise 105,728 (1.03%)
. . . using Debian weak keys 4,147 (0.03%) 53,141 (0.52%)
. . . using 512-bit RSA keys 123,038 (0.96%) 8,459 (0.08%)

. . . identified as a vulnerable device model 985,031 (7.68%) 1,070,522 (10.48%)
. . . model using low-entropy repeated keys 314,640 (2.45%)

Table 2: Summary of vulnerabilities — We analyzed our TLS and SSH scan results to measure the population of
hosts exhibiting several entropy-related vulnerabilities. These include use of repeated keys, use of RSA keys that were
factorable due to repeated primes, and use of DSA keys that were compromised by repeated signature randomness.
Under the theory that vulnerable repeated keys were generated by embedded or headless devices with defective designs,
we also report the number of hosts that we identified as these device models. Many of these hosts may be at risk even
though we did not specifically observe repeats of their keys.

n-bit integers would be O(mn lgm lg(mn) lg lg(mn)) for
the product and remainder trees and O(mn(lgn)2 lg lgn)
to compute the GCDs.

We implemented the algorithm in C using the GMP
library [23] for the arithmetic operations and ran it on the
11,170,883 distinct RSA moduli from our TLS and SSH
datasets and the EFF SSL Observatory [20] dataset. Our
product tree had 24 levels, each of which was about 2 GB
in size. In addition, GMP allocates a large amount of
scratch memory during the calculations—around 30 GB
for our dataset. Due to memory limitations, we wrote
each level to disk. We found that the product of all of the
moduli was too large for GMP’s raw-integer I/O format,
which cannot process numbers larger than 231 bytes. We
patched the library to remove this limitation.

The entire computation finished in 5.5 hours using a
single core on a machine with a 3.30 GHz Intel Core i5
processor and 32 GB of RAM. The remainder tree took
approximately ten times as long to process as the product
tree. Parallelized across sixteen cores on an EC2 Cluster
Compute Eight Extra Large Instance with 60.5 GB of
RAM and using EBS-backed storage for scratch data, the
same computation took 1.3 hours at a cost of about $5.

4 Vulnerabilities

We analyzed the data from our TLS and SSH scans and
identified several patterns of vulnerability that would have
been difficult to detect without a macroscopic view of
the Internet. This section discusses the details of these
problems, as summarized in Table 2.

4.1 Repeated keys
We found that 7,770,232 of the TLS hosts (61%) and
6,642,222 of the SSH hosts (65%) served the same key
as another host in our scans. To understand why, we
clustered certificates and host keys that shared the same
public key and manually inspected representatives of the
largest clusters. In all but a few cases, the TLS certificate
subjects, SSH version strings, or WHOIS information
were identical within a cluster, or pointed to a single
manufacturer or organization. This sometimes suggested
an explanation for the shared keys.

Not all of the repeated keys were due to vulnerabili-
ties. For instance, many of the most commonly repeated
keys appeared in shared hosting situations. Six of the ten
most common DSA host keys and three of the ten most
common RSA host keys were served by large hosting
providers (see Figure 2). Another frequent reason for
repeated keys was distinct TLS certificates all belonging
to the same organization. For example, TLS hosts at
google.com, appspot.com, and doubleclick.net all served
distinct certificates with the same public key. We excluded
these cases and attributed remaining clusters of shared
keys to several classes of problems.
Default keys A common reason for hosts to share
the same key that we do consider a vulnerability is
manufacturer-default keys. These are preconfigured in
the firmware of many devices, such that every device of
a given model shares the same key pair unless the user
changes it. The private keys to these devices may be
accessible through reverse engineering, and published
databases of default keys such as littleblackbox [28] con-
tain private keys for thousands of firmware releases.
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Figure 2: Commonly repeated SSH keys — We investigated the 50 most repeated SSH host keys for both RSA and
DSA. Nearly all of the repeats appeared to be due either to hosting providers using a single key on many IP addresses
or to devices that used a default key or generated keys using insufficient entropy. Note log scale.

At least 670,391 (5.23%) of the TLS hosts appeared to
serve manufacturer-default certificates or keys. We iden-
tified 57 distinct TLS certificates from the littleblackbox
0.1.3 database, revealing private keys for 23,476 (0.18%)
of the TLS hosts. We were able to identify 170 addi-
tional default certificates by manually inspecting the 654
self-signed certificates that appeared on more than 250
IP addresses. (Most browser-trusted certificates that were
served on multiple IP addresses appeared to be legitimate
HTTPS sites served from multiple web servers.) We clas-
sified a certificate as a manufacturer default if nearly all
the devices of a given model used identical certificates, or
if the certificate was labeled as a default certificate. Our
manually identified manufacturer-default certificates were
served by another 618,014 (4.82%) of the TLS hosts.

The most common default certificate that we could
ascribe to a particular device belonged to a model of
consumer router. Our scan uncovered 90,779 instances
of this device model sharing a single certificate. We also
found a variety of enterprise products serving default keys,
including server management devices, network storage
devices, routers, remote access devices, and VoIP devices.

At least another 85,046 TLS hosts (0.66%) served
default Apache certificates (sometimes referred to as
snake-oil certificates, because they often include the CN
www.snakeoil.dom); we identified 832 distinct snake-
oil certificates that were served on more than one host,
as many Linux distributions ship distinct default certifi-
cates. We did not count these among the vulnerable
manufacturer-default keys. However, we also found 58
non-default certificates that shared an RSA modulus with
one of these snake-oil certificates, including 22 that had
been signed by browser-trusted CAs. In these cases, it
is possible that organizations generated certificates with
their own information but included the default public key
shipped with Apache into their own certificate, rather than
generating a new private key.

We observed a similar phenomenon with default TLS
keys served by Citrix remote access servers: we found
1584 apparently unrelated Citrix hosts serving distinct cer-
tificates (including 16 signed by trusted CAs) that shared
keys with default certificates. The signed certificates
belonged to entities including Fortune 500 companies,
insurance providers, law firms, a major public transit au-
thority, and the U.S. Navy. These organizations may be
authenticating or encrypting remote-access service com-
munication using these duplicate keys.

For most of the repeated SSH keys, the lack of uniquely
identifying host information prevents us from distinguish-
ing default keys from keys generated with insufficient
entropy, so we address these together in the next section.

Repeated keys due to low entropy Another common
reason that hosts share the same key appears to be entropy
problems during key generation. In these instances, when
we investigated a key cluster, we would typically see
thousands of hosts across many address ranges, and, when
we checked the keys corresponding to other instances of
the same model of device, we would see a long-tailed
distribution in their frequencies. Intuitively, this type of
distribution suggests that the key generation process may
be using insufficient entropy, with distinct keys due to
relatively rare events. For TLS, our investigations began
with the keys that occurred in at least 100 distinct self-
signed certificates. For SSH, we started from the 50 most
commonly repeated keys for each of RSA (appearing on
more than 8000 hosts) and DSA (appearing on more than
4000 hosts).

With this process, we identified 43,852 TLS hosts
(0.34%) that served repeated keys due apparently to low
entropy during key generation. The repeated keys in-
cluded 208 distinct TLS RSA keys. 27,545 certificates
(98%) containing these repeated keys were self-signed; all
577 CA-signed certificates identified Iomega StorCenter
network storage devices. For most SSH hosts we were un-
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(b) Primes generated by IBM remote management cards

Figure 3: Visualizing RSA common factors — Different implementations displayed different patterns of vulnerable
keys. These plots depict the distribution of vulnerable keys divisible by common factors generated by two different
device models. Each column represents a collection of RSA moduli divisible by a single prime factor p. The color
and internal rectangles show, for each p, the frequencies of each distinct prime factor q. The Juniper device (left; note
log-log scale) follows a long-tailed distribution that is typical of many of the devices we identified. In contrast, the IBM
remote access device (right) was unique among those we observed in that it generates RSA moduli roughly uniformly
distributed among nine distinct prime factors.

able to distinguish between default keys and keys repeated
due to entropy problems, but 981,166 of the SSH hosts
(9.60%) served keys repeated for one of these reasons.
Our TLS and SSH datasets contained two RSA keys in
common; one was served from the same host on both TLS
and SSH, and the other was served by TLS and SSH on
distinct and seemingly unrelated hosts.

We used the techniques described in Section 3.2 to iden-
tify apparently vulnerable devices from 27 manufacturers.
These include enterprise-grade routers from Cisco; server
management cards from Dell, Hewlett-Packard, and IBM;
VPN devices; building security systems; network attached
storage devices; and several kinds of consumer routers
and VoIP products.

Given cryptographic key sizes, we would not expect
to see devices generate a single duplicated key for the
population sizes we examined if the keys were generated
with sufficient entropy. Therefore, duplicated keys are a
red flag that calls the security of the device’s key gener-
ation process into question, and all keys generated with
the same model device should be considered suspect. For
14 of the TLS devices generating repeated keys, we were
able to infer a fingerprint for the device model and esti-
mate the total population of the device in our scan. The
prevalence of duplicated keys varied greatly for different
device models, from as low as 0.2% in the case of one
router to 98% for one thin client. The total population of
these identified, potentially vulnerable TLS devices was
314,640 hosts, which represents 2.45% of the TLS hosts
in our scan.

In the above analyses, we excluded repeated keys that
were due to the infamous Debian weak-key vulnerabil-
ity [6, 51]. 4,147 (0.03%) of the hosts in our TLS dataset
served certificates with Debian weak keys. 17 of the 2,904
vulnerable certificates were signed by browser-trusted au-
thorities and 11 were signed after the vulnerability was
announced in August 2008. 31,111 (0.34%) of the RSA
SSH hosts and 22,030 (0.34%) of the DSA SSH hosts
served Debian weak keys. The most commonly repeated
weak key appeared on 3,422 SSH RSA hosts and 2,357
SSH DSA hosts. The most repeated Debian weak key in a
TLS certificate occurred in 1,115 distinct certificates; the
next most common keys appeared in 4 and 2 certificates.

4.2 Factorable RSA keys

A second way that entropy problems might manifest them-
selves during key generation is if an RSA modulus shares
one of its prime factors p or q with another key. As ex-
plained in Section 2.1, finding such a pair immediately
allows an adversary to efficiently factor both moduli and
obtain their respective private keys. In order to find such
keys, we computed the GCD of all pairs of distinct RSA
moduli by applying the algorithm described in Section 3.3
to a combined dataset consisting of the keys in our TLS
and SSH scans and the EFF SSL Observatory data. Run-
ning the algorithm on the combined datasets allowed us
to factor more keys than performing the computation sep-
arately for each, since with a larger collection of inputs
the algorithm has a larger factor base to use on each key.
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The 11,170,883 distinct RSA moduli yielded 2,314
distinct prime divisors, which divided 16,717 distinct
public keys. This allowed us to obtain private keys for
23,576 (0.40%) of the TLS certificates in our scan data,
which were served on 64,081 (0.50%) of the TLS hosts,
and 1,013 (0.02%) of the RSA SSH host keys, which were
served on 2,459 (0.027%) of the RSA SSH hosts.

The vast majority of the vulnerable keys appeared to be
system-generated certificates and SSH host keys used by
routers, firewalls, remote administration cards, and other
types of headless or embedded network devices. Only
two of the factorable TLS certificates had been signed by
a browser trusted authority and both have expired. Some
devices generated factorable keys both for TLS and SSH,
and a handful of devices shared common factors across
SSH and TLS keys.

We classified these factorable keys in a similar man-
ner to the repeated keys. We clustered the factorable
certificates and host keys together by prime divisor. We
found that, in all but a small number of cases, the TLS
certificates and SSH host keys divisible by a common
factor all belonged to a particular manufacturer, which we
were able to identify in most cases using the techniques
described in Section 3.2. We then grouped these clusters
by manufacturer and compared them to other certificates
and host keys from the same device model.

We identified devices from 41 manufacturers in this
way, which constituted 99% of the hosts that generated
RSA keys we could factor. The devices range from 100%
(576 of 576 devices) vulnerable to 0.01% vulnerable
(2 out of 10,932). As with repeated keys, we would
not expect to see well-generated cofactorable keys; any
device model observed generating factorable keys should
be treated as potentially vulnerable.

The majority of the devices serving factorable keys
were Juniper Networks Branch SRX devices.3 We iden-
tified 46,993 of these devices in our dataset, and we fac-
tored the keys for 12,688 (27%) of them. Of these keys,
7,510 (59%) share a single common divisor. The distribu-
tion of factors among its moduli is shown in Figure 3a.

The most remarkable devices were IBM Remote Server
Administration cards and BladeCenter Management Mod-
ules, which displayed a distribution of factors unlike any
of the other vulnerable devices we found. There were only
9 distinct prime factors that had been used to generate the
keys for 576 devices. Each device’s key was the product
of two different primes from this list. The 36 possible
moduli that could be generated with this process were
roughly uniformly distributed, as shown in Figure 3b. In
addition, this was the only device we observed to generate
RSA moduli where both prime factors were shared with
other keys.

3Juniper identified these models in private communication.
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Figure 4: Vulnerable DSA keys for one SSH device —
We identified 18,684 SSH DSA keys that appeared to
have been generated by Gigaset DSL routers, of which
16,575 were repeated at least once. Shown in red in this
log-log plot are 12,378 keys further compromised due
to repeated DSA signature values. The more commonly
repeated DSA keys were more likely to be compromised
by repeated signatures, as they are more likely to have
collisions between hosts in subsequent scans.

Several of the prime factors of the vulnerable keys dis-
played evidence of further entropy problems during key
generation. Some shared an improbably large number
of most significant bits in common—86 Sentry devices
had common divisors sharing 160 out of 512 bits and
two 2wire devices had a pair of common divisors with
their 85 most significant bits in common. Alarmingly, we
observed several prime factors of SSH host keys that were
almost all zero bytes, with only the first two and last three
bytes set, but we could not identify the device models.
In addition to signaling that the primes themselves were
generated with insufficient entropy, these constitute a sep-
arate, serious vulnerability, as it is possible to efficiently
factor an RSA modulus if a large enough fraction of the
bits of one of its factors is known [15] or shared with
another modulus [41].

Approximately 12 of the SSH RSA keys were divisible
by many small prime factors. Based on unlikely bit pat-
terns in the keys, we hypothesize that these cases were due
to memory corruption on the devices rather than broken
primality testing.4

4.3 DSA signature weaknesses

The third class of entropy-related vulnerability that we
searched for was repeated ephemeral keys in DSA signa-
tures. As explained in Section 2.2, if a DSA key is used
to sign two different messages using the same ephemeral

4The EFF SSL Observatory data contains several keys divisible by
many small prime factors, but we determined that those were due to data
corruption during scanning, as none of the cases was repeatable when
the hosts were rescanned.
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key, then the long-term private key is immediately com-
putable from the public key and the signatures. The pres-
ence of this vulnerability indicates entropy problems at
later phases of operation, after initial key generation. We
searched for signatures from identical keys containing re-
peated r values. Then we used the method in Section 2.2
to compute the corresponding private keys.

Our combined SSH DSA scans collected 9,114,925
signatures (in most cases, two from each SSH host serving
a DSA-based key) of which 4,365 (0.05%) contained the
same r value as at least one other signature. 4,094 of
these signatures (94%) used the same r value and the
same public key. This allowed us to compute the 281
distinct private keys used to generate these signatures.
These compromised keys were served by 105,728 (1.6%)
of the SSH DSA hosts in our combined scans.

We clustered the vulnerable signatures by r values
and manufacturer. 2,026 (46%) of the colliding r val-
ues appeared to have been generated by Gigaset SX762
consumer-grade DSL routers and revealed private keys
for 17,349 (66%) of the 26,374 hosts we identified as this
device model (see Figure 4). Another 934 signature colli-
sions appeared to be from ADTran Total Access business-
grade phone/network routers and revealed private keys
for 62,807 (73%) out of 86,301 such hosts. Several vul-
nerable device models, including the IBM RSA II remote
administration cards, also generated factorable RSA keys.

In addition to device randomness issues, we also dis-
covered compromised keys due to flawed software imple-
mentations of DSA running on general-purpose servers.
For example, hosts using the Java SSH Maverick library
always used the same r value for every DSA signature.

We did not collect DSA handshake signatures during
our TLS scan, but we did check the 6,107 DSA signatures
that were applied to TLS certificates by signature author-
ities or self-signing. We found no repeated DSA public
keys or signature ephemeral keys in this limited sample.

While we collected multiple signatures from some SSH
hosts, 3,917 (89.7%) out of 4,365 of the collisions were
from different hosts that had generated the same long-
term key and also used the same ephemeral key during
the key exchange protocol. This problem compounds the
danger of the repeated key vulnerability: a single signa-
ture collision between any pair of hosts sharing the same
key at any point during runtime reveals the private key for
every host using that key. In our dataset we observed tens
of thousands of hosts using the same public key. While a
single host may never repeat an ephemeral key, two hosts
sharing a private key can put each others’ keys at risk.

We note that any estimation of vulnerability based on
our data is an extreme lower bound, as we gathered at
most two signatures from each host in our scans. It is
likely that many more private keys would be revealed if
we collected additional signatures.

5 Experimental Investigation

Based on the results the previous section, we conjectured
that the problems we observed were an implementational
phenomenon. To more deeply understand the causes, we
augmented our data analysis with experimental investiga-
tion of specific implementations. While there are many
independently vulnerable implementations, we chose to
examine three open-source cryptographic software com-
ponents that appeared frequently in the vulnerable popu-
lations.

5.1 Weak entropy and the Linux RNG

We conjectured that the cause for many of the entropy
problems we observed began with insufficient random-
ness provided by the operating system. This led us to take
an in-depth look at the Linux random number generator
(RNG). We note that not every vulnerable key was gen-
erated on Linux; we also observed vulnerable keys on
FreeBSD and Windows systems, and similar vulnerabil-
ities to those we describe here have been reported with
BSD’s arc4random [50].

The Linux RNG maintains three entropy pools, each
with an associated counter that estimates how much fresh
entropy it has available. The RNG provides a function
to mix data into the pool (using a twisted generalized
feedback shift register) and to extract entropy from a pool
(by hashing the pool contents, mixing the hash back into
the pool, then hashing the hash again). Fresh entropy from
unpredictable kernel sources is periodically mixed into
the Input pool. When processes read from /dev/random,
the kernel extracts the requested amount of entropy from
the Input pool and mixes it into the Blocking pool, then
extracts bytes from the Blocking pool to return to the
process. If the Input pool does not contain enough entropy
to satisfy the request, the read blocks until additional
entropy becomes available. Similarly, when processes
read from /dev/urandom, the kernel attempts to transfer
the requested amount of entropy from the Input pool to the
Nonblocking pool. In this case, the read will be satisfied
immediately using the contents of the Nonblocking pool,
even if the Input pool entropy is depleted.

Entropy sources We experimented with the Linux
2.6.35 kernel to exhaustively determine the sources of
entropy used by the RNG. To do this, we traced through
the kernel source code and systematically disabled en-
tropy sources until the RNG output was repeatable. All of
the entropy sources we found are greatly weakened under
certain operating conditions.

When the kernel starts, the buffers that contain the
pools are deliberately left uninitialized and may contain
data left over from the previous boot; however, their
contents will be predictable if the system has been pow-
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Figure 5: Linux urandom boot-time entropy hole — We instrumented an Ubuntu Server 10.04 system to record its
estimate of the entropy contained in the Input entropy pool during a typical boot. Linux does not mix Input pool
entropy into the Nonblocking pool that supplies /dev/urandom until the Input pool exceeds a threshold of 192 bits
(blue horizontal line), which occurs here at 66 seconds post-boot. For comparison, we show the cumulative number
of bytes generated from the Nonblocking entropy pool; the vertical red line marks the time when OpenSSH seeds its
internal PRNG by reading from urandom, well before this facility is ready for secure use.

ered off long enough for memory to return to its ground
state [27] or in systems with ECC RAM, which is ze-
roized on startup. The startup clock time, in nanosecond
resolution, is also mixed in, but this value provides little
entropy in systems that do not have a working real-time
clock or on the first boot in systems where the real-time
clock value is set at zero during manufacturing. It may
also be predictable based on system uptime, which is
visible to remote attackers via TCP timestamps.

Entropy from the timing of human input events and
disk access is also mixed into the Input pool whenever
these events occur. However, human input entropy is not
available on unattended systems. Disk timings are only
available relatively late in the kernel boot process, after
disks have been initialized, and they are not available in
embedded devices that lack traditional disk storage.

In addition, typical Linux distributions save entropy
across boots by copying bytes from urandom to a local
file on shutdown and reading them into the Blocking and
Nonblocking pools at startup. However, this file is not
present on the first system boot, and it will not be available
until after the filesystem has been mounted.

The final and most interesting entropy source was one
that we have not seen documented elsewhere. Whenever
the kernel extracts entropy from a pool, it hashes the pool
contents and then mixes part of the result back into the
pool. The developers chose not to put a lock around this
entire procedure, and, as a result, if two threads extract
entropy concurrently, the pool contents may change any-
where in the middle of the hash computation. With eight
physical threads, we observed on average approximately
100 instances of re-entrant entropy extraction from the
Nonblocking pool during startup, mainly from entropy

consumption within the kernel. There was a high degree
of variation to the exact timing of these calls, resulting in
the introduction of significant (but uncredited) entropy to
the pool. Reentrant calls dropped to almost zero when we
forced the kernel to use only one physical thread (with
the maxcpus=0 flag), and we did not observe any entropy
being induced.

Surprisingly, modern Linux systems no longer collect
entropy from IRQ timings. The Linux kernel maintainers
deprecated the use of this source in 2009 by removing the
IRQF_SAMPLE_RANDOM flag, apparently to prevent events
controlled or observable by an attacker from contributing
to the entropy pools. Although mailing list discussions
suggest the intent to replace it with new collection mech-
anisms tailored to each interrupt-driven source [21], as of
Linux 3.4.2 no such functions have been added to the ker-
nel. The removal of IRQs as an entropy source has likely
exacerbated RNG problems in headless and embedded
devices, which often lack human input devices, disks, and
multiple cores. If they do, the only source of entropy—if
there are any at all—may be the time of boot.

Experiment To test whether Linux’s /dev/urandom
can produce repeatable output in conditions resembling
the initial boot of a headless or embedded networked de-
vice, we modified the 2.6.35 kernel to add instrumentation
to the RNG and disable certain entropy sources: (1) we
zeroized the entropy pools during initialization to simu-
late a cold boot with constant memory state; (2) we used a
fixed time value instead of the actual realtime clock value
to simulate a machine without a working clock; (3) we
limited the kernel to one physical thread to simulate a
low-end CPU.
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We experimented with this kernel on a Dell Optiplex
980 system using a fresh installation of Ubuntu server
10.04.4. The machine was configured with a Core i7 CPU,
4 GB RAM, a 32 GB SSD, and a USB keyboard. It was
attached to a university office LAN and obtained an IP ad-
dress using DHCP. With this configuration, we performed
1,000 unattended boots. Each time, we read 32 bytes
from urandom at the point in the initialization process
where the SSH server would normally start. Under these
conditions, we found that the output of /dev/urandom
was entirely predictable and repeatable.

The kernel maintains a reserve threshold for the Input
pool, and no data is copied into the Nonblocking pool until
the Input pool has been credited with at least that much
entropy (192 bits, for our kernel). Figure 5 shows the
cumulative amount of entropy credited to the Input pool
during a typical bootup from our tests. (Note that none
of the entropy sources we disabled would have resulted
in more entropy being credited to the pool.) The credited
entropy does not cross this reserve threshold until more
than a minute after boot, well after the SSH server and
other startup processes have launched. Although Ubuntu
tries to restore entropy saved during the last shutdown,
this happens slightly after the point when sshd first reads
from urandom.

With no entropic inputs, urandom produces a deter-
ministic output stream.We did observe variation due to
nondeterministic behavior at boot that influences exactly
how much data has been read from the stream at the point
that the SSH server starts; for instance, other startup pro-
cesses launched concurrently with the server may also be
vying to read from the device. Figure 6 shows where in
the predictable urandom stream the SSH server read. We
saw 27 different outputs during the 1,000 boots; the most
frequent occurred 23.7% of the time.

Boot-time entropy hole The entropy sources we dis-
abled would likely be missing in some headless and em-
bedded systems, particularly on first boot. This means
that there is a window of vulnerability—a boot-time en-
tropy hole—during which Linux’s urandom may be en-
tirely predictable, at least for single-core systems. If
processes generate long-term cryptographic keys with en-
tropy gathered during this window, those keys are likely
to be vulnerable. The risk is particularly high for unat-
tended systems that ship with preconfigured operating
systems and generate SSH or TLS keys the first time the
respective daemons start during the initial boot. Likewise,
if processes maintain their own entropy pools which are
seeded from urandom during this window and then main-
tained without the addition of further system entropy, any
cryptographic randomness extracted from those pools is
likely to be vulnerable.

On stock Ubuntu systems, these risks are somewhat
mitigated: TLS keys must be generated manually, and
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Figure 6: Predictable output from urandom — When
we disabled entropy sources that might be unavailable on
a headless or embedded device, the Linux RNG produced
the same predictable stream on every boot. The only
variation we observed over 1,000 boots was the position
in the stream where sshd read from urandom.

OpenSSH host keys are generated during package installa-
tion, which is likely to be late in the install process, giving
the system time to collect sufficient entropy. However, on
the Fedora, Red Hat Enterprise Linux (RHEL), and Cen-
tOS Linux distributions, OpenSSH is installed by default,
and host keys are generated on first boot. We experi-
mented further with RHEL 5 and 6 to determine whether
host keys on these systems might be compromised, and
observed that sufficient entropy had been collected at
the time of key generation (due to greater disk activity
than with Ubuntu Server) by a slim margin. We believe
that most server systems running these distributions are
safe, particularly since they likely have multiple cores
and gather additional entropy from physical concurrency.
However, it is possible that other distributions and cus-
tomized installations do not collect sufficient entropy on
startup and generate weak keys on first boot.

5.2 Factorable RSA keys and OpenSSL

One interesting question raised by our vulnerability re-
sults is why factorable RSA keys occur at all. A naïve
implementation of RSA key generation would simply
seed a PRNG from the operating system’s entropy pool
and then use it to generate p and q. In this approach, we
would expect to see duplicate keys if the OS provided
the same seed, but factorable keys would be extremely
unlikely. What we see instead is that some devices seem
prone to generating keys with common factors. Another
curious feature is that although some of the most common
prime factors divided hundreds of different moduli, in
nearly all of these cases the second prime factor did not
divide any other keys.

One explanation for this pattern is that implementa-
tions updated their entropy pools in the middle of key
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Figure 7: Calls to bnrand() during key generation —
Every time OpenSSL extracts randomness from its inter-
nal entropy pool using bnrand(), it mixes the current
time in seconds into the pool. This histogram shows the
number of calls for 100,000 1024-bit RSA key genera-
tion operations. Both the average and the variance are
relatively high due to the probabilistic procedure used to
generate primes.

generation. In this case, the entropy pool states might
be identical as distinct key generation processes generate
the first prime p and diverge while generating the second
prime q.

In order to explore this theory, we studied the source
code of OpenSSL [16], one of the most widely used open-
source cryptographic libraries. OpenSSL is not the only
software library responsible for the problems we observed,
but we chose to examine it because the source code is
freely available and because of its popularity. SSH version
strings identified OpenSSH (which uses OpenSSL’s key
generation libraries) for 75% of SSH hosts and 93% of
SSH hosts with factored RSA keys. For TLS, OpenSSL
was identified in the nsComments field of a certificate for
0.6% of TLS hosts and 0.6% of TLS hosts with factored
RSA keys. Mironov [42] observes that OpenSSL’s prime
generation code contains tests to generate “safe” primes
(those for which p− 1 has no small factors) and that
this unusual property for prime factors can be used to
identify implementations that use this code. We found
that 3,861 of the 16,717 factored moduli (23%) satisfied
this property, suggesting that 46 of the 54 device clusters
of factorable keys we identified use OpenSSL or similar
code for generating “safe” primes.

OpenSSL RSA key generation OpenSSL’s built-in
RSA key generator relies on an internal entropy pool main-
tained by OpenSSL. The entropy pool is seeded on first
use with (on Linux) 32 bytes read from /dev/urandom,
the process ID, user ID, and the current time in seconds.
OpenSSL provides a function named bnrand() to gen-
erate cryptographically-sized integers from the entropy
pool, which, on each call, mixes into the entropy pool

the current time in seconds, the process ID, and the pos-
sibly uninitialized contents of a destination buffer. Note
that, in identically configured systems, the only inputs to
the entropy pool that should be expected to diverge are
urandom, the time the pool is seeded, and the time of
each bnrand() call.

The RSA key generation algorithm generates the
primes p and q using a randomized algorithm. It selects
a random integer using bnrand() and uses trial division
to search for a candidate prime within a range. Once
a candidate prime is found, it is passed through several
rounds of the Miller-Rabin primality test, each of which
also queries bnrand() to generate randomness. If the
primality test fails, the above process is repeated with a
new random integer until a likely prime is found.

During this process, OpenSSL extracts entropy from
the entropy pool dozens to hundreds of times, as shown
in Figure 7. Since we observed many keys with one
prime factor in common, we can conjecture that multiple
systems are starting with urandom and the time in the
same state and that the entropy pool states diverge due to
the addition of time during intermediate steps of the key
generation process.

We hypothesized that, even when two executions begin
with identical inputs to the entropy pool and identical
clocks, the key generation process is hypersensitive to
small variations in where the boundary between seconds
falls. Slight variations in execution speed might cause the
wall clock tick to fall between different calls to bnrand(),
resulting in different execution paths. This can result in
several different behaviors, with three simple cases:

p q
t t+1

If the second never changes while
computing p and q, every execu-
tion will generate identical keys.

p q
t t+1

If the clock ticks while generating
p, both p and q diverge, yielding
distinct keys with no shared factors.

If instead the clock advances to the next second during the
generation of the second prime q, then two executions will

p q
t t+1

generate identical primes p but can
generate distinct primes q based on
exactly when the second changes.

Experiment To test our hypothesis, we modified
OpenSSL 1.0.0g to control all the entropy inputs used
during key generation, generated a large number of RSA
keys, and determined how many were identical or fac-
torable. We set the process ID, user ID, and uninitialized
input buffer to constant values and modified the time()
function to simulate the process starting at a configurable
time t0. Our experimental machine was a Dell Optiplex
980 with a 2.80 GHz Core i7 processor running Ubuntu
Server 10.04.4. For t0 ∈ {0,0.01, . . . ,1.10} we generated
100 1024-bit RSA keys using each of 40 different hard-
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Figure 8: OpenSSL generating factorable keys — We hypothesized that OpenSSL can generate factorable keys under
low-entropy conditions due to slight asynchronicity between the key generation process and the real-time clock, we
generated 14 million RSA keys using controlled entropy sources for a range of starting clock times. Each square in the
plot indicates the fraction of 100 generated keys that could we could factor. In many cases (white), keys are repeated
but never share primes. After a sudden phase change, factorable keys occur during a range leading up to the second
boundary, and that range increases as we simulate machines with slower execution speeds.

coded values in place of /dev/urandom. To simulate
the effects of slower clock speeds, we dilated the clock
time returned by time() and repeated the experiment
using dilation multipliers of 1–32. In all, we generated
14 million keys. We checked for common factors within
each batch of 100 keys.

The results we obtained, illustrated in Figure 8, are
consistent with our hypothesis. At all time dilations, we
find that factorable keys are generated during a range
of start times leading up to the second boundary. No
factorable keys are generated for low starting offsets, as
both p and q are generated before the second changes. As
the initial offset increases, there is a rapid phase change
to generating factorable keys, as generation of q values
begins to overlap the second boundary. Eventually, the
fraction of factorable keys falls as the second boundary
occurs during the generation of more p values, resulting
in distinct moduli with no common factors.

The range of starting offsets when factorable keys oc-
curred is narrow at fast clock speeds and spreads out as
the time dilation factor increases and the simulated speed
of the machine falls. For very slow simulated clocks,
OpenSSL generates factorable keys for nearly the whole
range of clock offsets. This may be reflective of the per-
formance of many embedded devices.

While this theory can explain many of the device be-
haviors we observed, some devices produced distributions
of factors that must have other causes. For example, the
IBM RSA II remote administration devices (shown in
Figure 3b) generated only nine distinct prime factors and
the moduli appeared to be generated by selecting two of

these prime factors uniformly at random. In this case,
each modulus shared both of its prime factors with a
large number of other devices. We saw evidence of this
phenomenon only for a few hundred devices.

5.3 DSA signature weaknesses and Dropbear

The DSA signature vulnerabilities we observed indicate
that entropy problems impact not only key generation but
also the continued runtime behavior of server software
during normal usage. This is somewhat surprising, since
we might expect the operating system to collect suffi-
cient entropy eventually, even in embedded devices. We
investigated Dropbear, a popular light-weight SSH imple-
mentation. It maintains its own entropy pools seeded from
the operating system at launch, on Linux with 32 bytes
read from urandom. This suggests a possible explanation
for the observed problems: the operating system had not
collected enough entropy when the SSH server started,
and, from then on, even though the system entropy pool
may have had further entropy, the running SSH daemon
did not.

To better understand why these programs produce vul-
nerable DSA signatures, we examined the source code
for the current version of Dropbear, 0.55. The ephemeral
key is generated as output from an internal entropy pool.
Whenever Dropbear extracts data from its entropy pool,
it increments a static counter and hashes the result into
the pool state. No additional randomness is added until
the counter (a 32-bit integer) overflows, at which point
the entropy pool is reseeded with data from urandom, the
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current time, and the process ID. This implies that, if two
Dropbear servers are initially seeded with the same value
from urandom, they will provide identical signature ran-
domness as long as their counters remain synchronized
and do not overflow.

(We note that Dropbear contains a routine to generate k
in a manner dependent on the message to be signed, which
would ensure that distinct messages are always signed
with distinct k values and protect against the vulnerability
that we explore here. However, that code is disabled by
default.)

We looked for evidence of synchronized sequences
of ephemeral keys in the wild by making further SSH
requests to a handful of the Dropbear hosts from our
scan. We chose two hosts with the SSH version string
dropbear-0.39 that had used identical DSA public keys
and r values during our original SSH scan. There were
356 IP addresses in our dataset that had served that pub-
lic key, and we rescanned these addresses to find any
that might currently be synchronized. We received 291
responses, and one pair used identical r values. We im-
mediately collected 50 further signatures from these two
hosts, and found that the signatures followed an identical
sequence of r values. We could advance the sequence
of one host by making several SSH requests, then cause
the other host to catch up by making the same number
of requests. When probed again an hour later, both hosts
remained in sync. This suggests that the Dropbear code
is causing vulnerabilities on real hosts in the manner we
predicted.

Dropbear appeared in the version strings of 1,367,365
(13.4%) of the SSH hosts in our scans and 222 (5.09%)
of the hosts with repeated DSA r values. Several other
implementations, including hosts identifying OpenSSH
and the Siemens Gigaset routers displayed similar behav-
ior when rescanned. Because OpenSSL adds the current
clock time to the entropy pool before extracting these
random values, this suggests that some of these devices
do not have a working clock at all.

6 Discussion

6.1 RSA vs. DSA in the face of low entropy

Any cryptosystem that relies on a secret key for security
will be compromised if an adversary can determine that
key. In practice, this might happen if an implementation
leaks side-channel information about the key, or if the ad-
versary can enumerate a reduced key space generated by
low-entropy inputs. However, both RSA and DSA have
specific catastrophic failure modes when implemented
without sufficient entropy which can reveal the private
key to an attacker who knows nothing about how the
keys were generated. In a sense, the design of both cryp-

tosystems permits the large-scale behavior of low-entropy
implementations to act like a type of cryptographic side
channel. From the point of view of robustness, these
properties of the algorithms are less than ideal, but they
result in vulnerability due to flawed implementations, not
cryptographic flaws in either RSA or DSA.

We believe that the DSA signature vulnerabilities pose
more cause for concern than the RSA factorization vul-
nerability. The RSA key factorization vulnerability that
we investigated occurs only for certain patterns of key
generation implementations in the presence of low en-
tropy. In contrast, the DSA signature vulnerability can
compromise any DSA private key—no matter how well
generated—if there is ever insufficient entropy at the time
the key is used for signing. It is not necessary to search for
a collision, as we did; it suffices for an attacker to be able
to guess the ephemeral private key k. The most analogous
attacks against RSA of which we are aware show that
some types of padding schemes can allow an attacker to
discover the encrypted plaintext or forge signatures [11].
We are unaware of any attacks that use compromised RSA
signatures to recover the private key.

We note that our findings show a larger fraction of
SSH hosts are compromised by the DSA vulnerability
than by factorable RSA keys, even though our scanning
techniques have likely only revealed a small fraction of
the hosts prone to repeating DSA signature randomness.
In contrast, the factoring algorithm we used has found all
of the repeated RSA primes in our sample of keys.

There are specific countermeasures that implementa-
tions can use to protect against these attacks. If both
prime factors of an RSA modulus are generated from a
PRNG without adding additional randomness during key
generation, then low entropy would result in repeated but
not factorable keys. These are more readily observable,
but may be trickier to exploit, because they do not imme-
diately reveal the private key to a remote attacker. To pre-
vent DSA randomness collisions, the randomness for each
signature can be generated as a function of the message
and the pseudorandom input. (It is very important to use
a cryptographically secure PRNG for this process [5].) Of
course, the most important countermeasure is for imple-
mentations to use sufficient entropy during cryptographic
operations that require randomness, but defense-in-depth
remains the prudent course.

6.2 /dev/(u)random as a usability failure

Linux and some other UNIX-like operating systems
provide two interfaces for generating randomness:
/dev/random, which blocks until the system estimates
that its entropy pool contains enough fresh entropy to sat-
isfy the request, and /dev/urandom, which immediately
returns the requested number of bytes even if no entropy
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has been added to the pool. Neither adequately suits the
needs of application developers.

The Linux documentation states that “[a]s a general
rule, urandom should be used for everything except long-
lived GPG/SSL/SSH keys” [1]. However, all the open-
source implementations we examined used urandom to
generate keys by default. Based on a survey of developer
mailing lists and forums, it appears that this choice is
motivated by two factors: random’s extremely conserva-
tive behavior and the mistaken perception that urandom’s
output is secure enough.

As others have noted, Linux is very conservative at
crediting randomness added to the entropy pool [26],
and random further insists on using freshly collected ran-
domness that has not already been mixed into the output
PRNG. The blocking behavior means that applications
that read from random can hang unpredictably, and, in
a headless device without human input or disk entropy,
there may never be enough input for a read to complete.
While blocking is intended to be an indicator that the sys-
tem is running low on entropy, random often blocks even
though the system has collected more than enough entropy
to produce cryptographically strong PRNG output—in a
sense, random is often “crying wolf” when it blocks.

This behavior appears to have contributed to a
widespread belief among developers that random’s block-
ing behavior is merely an annoyance to be worked around.
A comment in the Dropbear source code reflects this view:

/* We’ll use /dev/urandom by default,
since /dev/random is too much hassle. If
system developers aren’t keeping seeds
between boots nor getting any entropy from
somewhere it’s their own fault. */
#define DROPBEAR_RANDOM_DEV "/dev/urandom"

Our experiments suggest that many of the vulnerabil-
ities we observed may be due to the output of urandom
being used to seed entropy pools before any entropic
inputs have been mixed in. Unfortunately, the existing in-
terface to urandom gives the operating system no means
of alerting applications to this dangerous condition. Our
recommendation is that Linux should add a secure RNG
that blocks until it has collected adequate seed entropy
and thereafter behaves like urandom.

6.3 Are we seeing only the tip of the iceberg?

Nearly all of the vulnerable hosts that we were able to
identify were headless or embedded devices. This raises
the question of whether the problems we found appear
only in these types of devices, or if instead we are merely
seeing the tip of a much larger iceberg.

Based on the experiments described in Section 5.1, we
conjecture that there may exist further classes of vulnera-
ble keys that were not visible to our methods, but could be

compromised with targeted attacks. The first class is com-
posed of embedded or headless devices with an accurate
real-time clock. In these cases, keys generated during the
boot-time entropy hole may appear distinct, but depend
only on a configuration-specific state and the boot time.
These keys would not appear vulnerable in our scanning,
but an attacker may be able to enumerate some or all of
such a reduced key space for targeted implementations.

A more speculative class of potential vulnerability con-
sists of traditional PC systems that automatically generate
cryptographic keys on first boot. We observed in Sec-
tion 5.1 that an experimental machine running RHEL 5
and 6 did collect sufficient entropy in time for SSH key
generation, but that the margin of safety was slim. It is
conceivable that some lower-resource systems may be
vulnerable.

Finally, our study was only able to detect vulnerable
DSA ephemeral keys under specific circumstances where
a large number of systems shared the same long-term key
and were choosing ephemeral keys from the same small
set. There may be a larger set of hosts using ephemeral
keys that do not repeat across different systems but are
nonetheless vulnerable to a targeted attack.

We found no evidence suggesting that RSA keys from
standard implementations that were generated interac-
tively or subsequent to initial boot are vulnerable.

6.4 Directions for future work

In this work, we examined keys from two cryptographic
algorithms on two protocols visible via Internet-wide
scans of two ports. A natural direction for future work
is to broaden the scope of all of these choices. Entropy
problems can also affect the choice of Diffie-Hellman key
parameters and keying material for symmetric ciphers. In
addition, there are many more subtle attacks against RSA,
DSA, and ECDSA that we did not search for. We focused
on keys, but one might also try to search for evidence of
repeated randomness in initialization vectors in ciphertext
or salts in cryptographic hashes.

We also focused solely on services visible to our scans
of the public Internet. Similar vulnerabilities might be
found by applying this methodology to keys or other cryp-
tographic data obtained from other resource-constrained
devices that perform cryptographic operations, such as
smart cards or mobile phones.

The observation that urandom can produce predictable
output on some types of systems at boot may lead to at-
tacks on other services that automatically begin at boot
and depend on good randomness from the kernel. It war-
rants investigation to determine whether this behavior
may undermine other security mechanisms such as ad-
dress space layout randomization or TCP initial sequence
numbers.
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7 Defenses and Lessons

The vulnerabilities we have identified are a reminder that
secure random number generation continues to be a chal-
lenging problem. There is a tendency for developers at
each layer of the software stack to silently shift respon-
sibility to other layers; a far better practice would be
a defense-in-depth approach where developers at every
layer apply careful security design and testing and make
assumptions clear. We suggest defensive strategies and
lessons for several important groups of stakeholders.

For OS developers:

Provide the RNG interface applications need. Typi-
cal security applications require a source of random-
ness that is guaranteed to be of high quality and has
predictable performance; neither Linux’s /dev/random
nor /dev/urandom strikes this balance (see Section 6.2).
The operating system should maintain a secure PRNG
that refuses to return data until it has been seeded with a
minimum amount of true randomness and is continually
seeded with fresh entropy collected during operation.

Communicate entropy conditions to applications. The
problem with /dev/urandom is that it can return data
even before it has been seeded with any entropy. The OS
should provide an interface to indicate how much entropy
it has mixed into its PRNG, so that applications can gauge
whether the state is sufficiently secure for their needs.

Test RNGs thoroughly on diverse platforms. Many of the
entropy sources that Linux supports are not available on
headless or embedded devices. These behaviors may not
be apparent to OS developers unless they routinely test
the internals of the entropy collection subsystem across
the full spectrum on platforms the system supports.

For library developers:

Default to the most secure configuration. Both OpenSSL
and Dropbear default to using /dev/urandom instead of
/dev/random, and Dropbear defaults to using a less se-
cure DSA signature randomness technique even though
a more secure technique is available as an option. In
general, cryptographic libraries should default to using
the most secure mechanisms available. If the library pro-
vides fallback options, the documentation should make
the trade-offs clear.

Use RSA and DSA defensively. Crypto libraries can
take specific steps to prevent weak entropy from resulting
in the immediate leak of private keys due to co-factorable
RSA moduli and repeated DSA signature randomness
(see Section 6.1).

Heed warnings from the OS, and pass them on. If the
OS provides a mechanism to signal that the entropy it

has collected is insufficient for cryptographic use (such
as blocking when /dev/random is read), do not proceed
with key generation or other security-critical operations.
Provide an interface to communicate these states to appli-
cations, and document the condition as security critical.

For application developers:

Generate keys on first use, not on install or first boot.
When keys are generated on initial boot, little or no en-
tropy may be available from the operating system. If keys
must be generated automatically, it may be better to defer
generation until the keys are needed (such as during the
first SSH connection), by which point the system will
have had more of a chance to collect entropy.

Heed warnings from below. If the OS or cryptography
library being used raises a signal that insufficient entropy
is available (such as blocking), applications should de-
tect this signal and refuse to perform security-critical
operations until the system recovers from this potentially
vulnerable state. Developers have been known to work
around low-entropy states by ignoring or disabling such
warnings, with extremely dangerous results [25].

Frequently add entropy from the operating system.
When using libraries that maintain their own entropy
pools, periodically add fresh randomness from the op-
erating system in order to take advantage of additional
entropy collected by the system during use. This is espe-
cially important for long-running daemons that are typi-
cally launched at the boot, when little or no entropy may
be available.

For device manufacturers:

Avoid factory-default keys or certificates. While some
defense is better than nothing, default keys and certifi-
cates provide only minimal protection. A better approach
is to generate fresh keys on the device after sufficient
randomness has been collected or to force users to upload
their own keys.

Seed entropy at the factory. Devices could be initialized
with truly random seeds at the factory. Sometimes it is al-
ready necessary to configure unique state on the assembly
line (such as to set MAC addresses), and entropy could
be added at the same time.

Ensure entropy sources are effective. Embedded or head-
less devices may not have access to sources of randomness
assumed by the operating system, such as user-input de-
vices or disk timing. Device makers should ensure that
effective entropy sources are present, and that these are
being harvested in advance of cryptographic operations.

Test cryptographic randomness on the completed device.
Device makers should not simply assume that standard
OS functions or cryptographic libraries are functioning
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correctly. Rather, they should test the complete device to
check for weak keys and other entropy-related failures.
Device makers can repeat some of the entropy tests that
we describe in this paper on a smaller scale by generating
many keys under simulated usage conditions and check-
ing for repeated keys, factorable moduli, and repeated
signature randomness.

Use hardware random number generators when possible.
Given the problems we have identified with entropy col-
lection in software, security-critical devices should use a
hardware random number generator for cryptographic ran-
domness whenever possible. Simple, low-cost circuits can
provide sufficient entropy to seed a PRNG [48], and Intel
has started introducing this capability in new CPUs [47].

For certificate authorities:

Check for repeated, weak, and factorable keys Certifi-
cate authorities have a uniquely broad view of keys con-
tained in TLS certificates. We recommend that they repeat
our work against their certificate databases and take steps
to protect their customers by alerting them to potentially
weak keys.

For end users:

Regenerate default or automatically generated keys.
Cryptographic keys and certificates that were shipped
with the device or automatically generated at first boot
should be manually regenerated. Ideally, certificates and
keys should be generated on another device (such as a
desktop system) with access to adequate entropy.

Check for known weak keys. We have created a key-
check service (see Section 8) that individuals can use to
check their TLS certificates and SSH host keys against
our database of keys we have identified as vulnerable.
Additionally, we will list security advisories and software
updates reported to us at https://factorable.net.

For security and crypto researchers:

Secure randomness remains unsolved in practice. The
fact that all major operating systems now provide cryp-
tographic RNGs might lead security experts to believe
that any entropy problems that still occur are the fault
of developers taking foolish shortcuts. Our findings sug-
gest otherwise: entropy-related vulnerabilities can result
from complex interaction between hardware, operating
systems, applications, and cryptographic primitives. We
have yet to develop the engineering practices and princi-
ples necessary to make predictably secure use of unpre-
dictable randomness across the diverse variety of systems
where it is required.

Primitives should fail gracefully under weak entropy.
Cryptographic primitives are usually designed to be se-
cure under ideal conditions, but practice will subject them

to conditions that are less than ideal. We find that RSA
and DSA, with surprising frequency, are used in practice
under weak entropy scenarios where, due to the design
of these cryptosystems, the private keys are totally com-
promised. More attention is needed to ensure that future
primitives degrade gracefully under likely failure modes
such as this.

8 Online Key-check Service

It is impractical for individual system administrators or
device owners to repeat our Internet-wide survey work in
order to detect whether their keys were generated with
weak entropy. Therefore we have created an online ser-
vice that allows users to check their SSH host keys or TLS
certificates against our dataset. The service is available at
https://factorable.net.

Our key-check service accepts X.509 certificates and
base64-encoded host keys, and it can automatically re-
trieve keys from given HTTPS URLs or SSH server host-
names. It checks the provided keys against our database
of known factorable keys, Debian weak keys, and snake-
oil keys. While we cannot make any guarantees that a
provided key is safe, we can immediately identify keys
and certificates that we know to be weak.

Our service informs the user that their key or certificate
is vulnerable, but it is designed not to reveal data that
could further an attack. We report whether the key is
known to be weak or factorable and the number of IP
addresses presenting the same certificate or the same key.
However, we do not display which other hosts use the
same key or co-factorable keys. We rate-limit requests to
prevent attackers from extracting the entire collection of
weak keys, though we note that an attacker could repeat
our scanning work and obtain the same information.

Ideally, we would also like to check whether a previ-
ously unseen key has a known factorization by calculating
its GCD with our set of known keys. It takes approxi-
mately 190 seconds to test whether a new key has known
factors given our current set of 11 million distinct mod-
uli and 17 µs computation time per modulus. It is not
feasible to provide results in real time for any significant
traffic load, but we are considering a system that would
allow users to submit keys for offline factorization and
send the results by email.

9 Related Work

HTTPS surveys The HTTPS public-key infrastruc-
ture has been a focus of attention in recent years, and
researchers have performed several large-scale scans to
measure TLS usage and CA behavior. In contrast, our
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study addresses problems that are mostly separate from
the CA ecosystem.

Ristic published an SSL survey in July 2010 [44] exam-
ining hosts serving the Alexa top 1 million domain names
and 119 million other domain registrations. The study
found 900,000 hosts serving HTTPS and 600,000 valid
certificates. The same year, the Electronic Frontier Foun-
dation (EFF) and iSEC Partners debuted the SSL Observa-
tory project [20] and released the largest public repository
of TLS certificates. They scanned approximately 87%
of the IPv4 address space on port 443 and downloaded
the resulting X.509 certificates over a three-month period.
They released two datasets, the larger of which (from
December 2010) recorded 4.0 million certificates from
7.7 million HTTPS hosts. The authors used their data to
analyze the CA infrastructure and noted several vulner-
abilities. We owe the inspiration for our work to their
fascinating dataset, in which we first identified several
of the entropy problems we describe; however, we ulti-
mately performed our own scans to have more up-to-date
and complete data. Our scan data contains approximately
67% more IP addresses and 45% more certificates than
the latest publicly available SSL Observatory scan.

In 2011, Holz et al. [30] scanned the Alexa top 1 mil-
lion domains and observed TLS sessions passing through
the Munich Scientific Research Network (MWN). Their
study recorded 960,000 certificates and was the largest
academic study of TLS data at the time. They report many
statistics gathered from their survey, mainly focusing on
the state of the CA infrastructure. We note that they ex-
amined repeated keys and dismissed them as “curious,
but not very frequent.” Yilek et al. [51] performed daily
scans of 50,000 TLS servers over several months to track
replacement time for certificates affected by the Debian
weak key bug. Our count of Debian certificates provides
another data point on this subject.

Problems with random number generation Several
significant vulnerabilities relating to weak random num-
ber generation have been found in widely used software.
In 1996, the Netscape browser’s SSL implementation
was found to use fewer than a million possible seeds for
its PRNG [22]. In May 2008, Bello discovered that the
version of OpenSSL included in the Debian Linux distri-
bution contained a bug that caused keys to be generated
with only 15 bits of entropy [6]. The problem caused only
294,912 distinct keys to be generated per key size dur-
ing a two year period before the error was found [51].In
August 2010, the EFF SSL Observatory [20] reported
that approximately 28,000 certificates, 500 of which were
signed by browser-trusted certificate authorities, were still
using these Debian weak keys.

Gutmann [25] draws lessons about secure software
design from the example of developer responses to an
OpenSSL update intended to ensure that the entropy

pool was properly seeded before use. He observes that
many developers responded by working around the safety
checks in ways that supplied no randomness whatso-
ever. The root cause, according to Gutmann, was that
the OpenSSL design left the difficult job of supplying suf-
ficient entropy to library users. He concludes that PRNGs
should handle entropy-gathering themselves.

Gutterman, Pinkas, and Reinmann analyzed the Linux
random number generator in 2006 [26]. In contrast to
our analysis, which focuses on empirical measurement of
an instrumented Linux kernel, theirs was based mainly
on a review of the LRNG design. They point out sev-
eral weaknesses from a cryptographic perspective, some
of which have since been remedied. In a brief experi-
mental section, they observe that the only entropy source
used by the OpenWRT Linux distribution was network
interrupts.Dorrendorf, Gutterman, and Pinkas reverse-
engineered the Windows random number generator [19]
and discovered that an attacker with access to one state of
the generator could enumerate all past and future states.

Weak entropy and cryptography In 2004, Bauer and
Laurie [2] computed the pairwise GCDs of 18,000 RSA
keys from the PGP web of trust and discovered a pair with
a common factor of 9, demonstrating that the keys had
been generated with broken (or omitted) primality testing.

The DSA signature weakness we investigate is well
known and appears to be folklore. In 2010, the hacking
group fail0verflow computed the ECDSA private key used
for code signing on the Sony PS3 after observing that the
signatures used repeated ephemeral keys [13]. Several
more sophisticated attacks against DSA exist: Bellare,
Goldwasser, and Miccancio [5] show that the private key
is revealed if the ephemeral key is generated using a lin-
ear congruential generator, and Howgrave-Graham and
Smart [31] give a method to compute the private key from
a fraction of the bits of the ephemeral key.

Ristenpart and Yilek [43] developed “virtual ma-
chine reset” attacks in 2010 that induce repeated DSA
ephemeral keys after a VM reset, and they implement
“hedged” cryptography to protect against this type of ran-
domness failure. Hedged public key encryption was intro-
duced by Bellare et al. in 2009 and is designed to fail as
gracefully as possible in the face of bad randomness [4].

As we were preparing this paper for submission, an in-
dependent group of researchers uploaded a preprint [37]
reporting that they had computed the pairwise GCD of
RSA moduli from the EFF SSL Observatory dataset and
a database of PGP keys. Their work is concurrent and in-
dependent to our own; we were unaware of these authors’
efforts before their work was made public. They declined
to report the GCD computation method they used. We
responded by publishing a blog post [29] describing our
GCD computation approach and summarizing some of
the key findings we detail in this paper.
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The authors of the concurrent work report similar re-
sults to our own on the fraction of keys that were able to
be factored, and thus the two results provide validation for
each other. In their paper, however, the authors draw very
different conclusions than we do. They do not analyze
the source of these entropy failures, and they conclude
that RSA is “significantly riskier” than DSA. In contrast,
we performed original scans that targeted SSH as well as
TLS, and we looked for DSA repeated signature weak-
nesses as well as cofactorable RSA keys. We find that
SSH DSA private keys are compromised by weak entropy
at a higher rate than RSA keys, and we conclude that the
fundamental problem is an implementational issue rather
than a cryptographic one.

Furthermore, the authors of the concurrent work state
that they “cannot explain the relative frequencies and
appearance” of the weak keys they observed and report
no attempt to determine their source. In this work, we
performed extensive investigation to trace the vulnerable
keys back to specific devices and software implementa-
tions, and we have notified the responsible developers and
manufacturers. We examined the source code of several
of these implementations and performed experiments to
understand why entropy problems are occurring. We find
that the weak keys can be explained by specific design and
implementation failures at various levels of the software
stack, and we make detailed recommendations to devel-
opers and users that we hope will lessen the occurrence
of these problems in the future.

10 Conclusion

In this work, we investigated the security of random num-
ber generation on a broad scale by performing and an-
alyzing the most comprehensive Internet-wide scans of
TLS certificates and SSH host keys to date. Using the
global view provided by our data, we discovered that inse-
cure RNGs are in widespread use, leading to a significant
number of vulnerable RSA and DSA keys.

Our experiences suggest that the type of scanning and
analysis we performed can be a useful tool for finding sub-
tle flaws in cryptographic implementations, and we hope
it will be applied more broadly in future work. Previous
examples of random number generation flaws were found
by painstakingly reverse engineering individual devices
or implementations, or through luck when a collision was
observed by a single user. Our scan data allowed us to
essentially mine for vulnerabilities and detect problems
in dozens of different devices and implementations in a
single shot. Many of the collisions we found were too rare
to ever have been observed by a single user but quickly
became apparent with a near-global view of the universe
of public keys. The results are a reminder to all that
vulnerabilities can sometimes be hiding in plain sight.
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